A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems
نویسنده
چکیده
The need for trading off interpretability and accuracy is intrinsic to the use of fuzzy systems. The obtaining of accurate but also human-comprehensible fuzzy systems played a key role in Zadeh and Mamdani’s seminal ideas and system identification methodologies. Nevertheless, before the advent of soft computing, accuracy progressively became the main concern of fuzzy model builders, making the resulting fuzzy systems get closer to black-box models such as neural networks. Fortunately, the fuzzy modeling scientific community has come back to its origins by considering design techniques dealing with the interpretability-accuracy tradeoff. In particular, the use of genetic fuzzy systems has been widely extended thanks to their inherent flexibility and their capability to jointly consider different optimization criteria. The current contribution constitutes a review on the most representative genetic fuzzy systems relying on Mamdani-type fuzzy rule-based systems to obtain interpretable linguistic fuzzy models with a good accuracy.
منابع مشابه
Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems
Genetic algorithms and evolution strategies are combined in order to build a multi-stage hybrid evolutionary algorithm for learning constrained approximate Mamdani-type knowledge bases from examples. The genetic algorithm niche concept is used in two of the three stages composing the learning process with the purpose of improving the accuracy of the designed fuzzy rule-based systems. The propos...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملLearning Concurrently Granularity, Membership Function Parameters and Rules of Mamdani Fuzzy Rule-based Systems
In this paper we tackle the issue of generating Mamdani fuzzy rule-based systems with optimal trade-offs between complexity and accuracy by using a multi-objective genetic algorithm, which concurrently learns rule base, granularity of the input and output partitions and membership function parameters. To this aim, we exploit a chromosome composed of three parts, which codify, respectively, the ...
متن کاملMogul: a Methodology to Obtain Genetic Fuzzy Rule-based Systems under the Iterative Rule Learning Approach Mogul: a Methodology to Obtain Genetic Fuzzy Rule-based Systems under the Iterative Rule Learning Approach
The main aim of this paper is to present MOGUL, a Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning approach. MOGUL will consist of some design guidelines that allow us to obtain diierent Genetic Fuzzy Rule-Based Systems, i. e., evolutionary algorithm-based processes to automatically design Fuzzy Rule-Based Systems by learning and/or tuning the Fuzzy Rule ...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 52 شماره
صفحات -
تاریخ انتشار 2011